39 research outputs found

    Chiral logarithms to five loops

    Get PDF
    We investigate two specific Green functions in the framework of chiral perturbation theory. We show that, using analyticity and unitarity, their leading logarithmic singularities can be evaluated in the chiral limit to any desired order in the chiral expansion, with a modest calculational cost. The claim is illustrated with an evaluation of the leading logarithm for the scalar two-point function to five-loop order.Comment: 13 pages, 5 figure

    Radiative corrections in K --> 3 pi decays

    Full text link
    We investigate radiative corrections to K --> 3 pi decays. In particular, we extend the non-relativistic framework developed recently to include real and virtual photons and show that, in a well-defined power counting scheme, the results reproduce corrections obtained in the relativistic calculation. Real photons are included exactly, beyond the soft-photon approximation, and we compare the result with the latter. The singularities generated by pionium near threshold are investigated, and a region is identified where standard perturbation theory in the fine structure constant alpha may be applied. We expect that the formulae provided allow one to extract S-wave pi pi scattering lengths from the cusp effect in these decays with high precision.Comment: 57 pages, 17 figure

    The cusp effect in eta' --> eta pi pi decays

    Full text link
    Strong final-state interactions create a pronounced cusp in eta' --> eta pi0 pi0 decays. We adapt and generalize the non-relativistic effective field theory framework developed for the extraction of pi pi scattering lengths from K --> 3 pi decays to this case. The cusp effect is predicted to have an effect of more than 8% on the decay spectrum below the pi+ pi- threshold.Comment: 11 pages, 8 figures; comment added, typos corrected, version published in Eur. Phys. J.

    Leading infrared logarithms for sigma-model with fields on arbitrary Riemann manifold

    Full text link
    We derive non-linear recursion equation for the leading infrared logarithms (LL) in four dimensional sigma-model with fields on an arbitrary Riemann manifold. The derived equation allows one to compute leading infrared logarithms to essentially unlimited loop order in terms of geometric characteristics of the Riemann manifold. We reduce the solution of the SU(oo) principal chiral field in arbitrary number of dimensions in the LL approximation to the solution of very simple recursive equation. This result paves a way to the solution of the model in arbitrary number of dimensions at N-->ooComment: Talk given by MVP at the conference devoted to memory of A.N. Vasilie

    Leading Chiral Logarithms for Pion Form Factors to Arbitrary Number of Loops

    Full text link
    We develop the method of calculation of the leading chiral (infrared) logarithms to an arbitrary loop order for various form factors of Nambu-Goldstone bosons. The method is illustrated on example of scalar and vector form factors in massless 4D O(N+1)/O(N) sigma-model. The analytical properties of the form factors are derived. The leading chiral (infrared) logarithms are summed up in the large N limit.Comment: 5 page

    Cusps in K_L --> 3 pi decays

    Get PDF
    The pion mass difference generates a pronounced cusp in K --> 3 pi decays, the strength of which is related to the pi pi S-wave scattering lengths. We apply an effective field theory framework developed earlier to evaluate the amplitudes for K_L --> 3 pi decays in a systematic manner, where the strictures imposed by analyticity and unitarity are respected automatically. The amplitudes for the decay eta --> 3 pi are also given.Comment: 15 pages, 3 figures, uses Elsevier styl

    Dispersive representation of K -> 3 pi amplitudes and cusps

    Full text link
    The NA48/2 collaboration has shown clear experimental evidence for a cusp in the data for K -> pi pi^0 pi^0. This effect can be used to extract information on the pi-pi scattering lengths. We address this issue using a two-loop dispersive construction of pi pi -> pi pi and K -> pi pi pi amplitudes in the presence of isospin breaking.Comment: 4 pages, 1 figure, to appear in Proceedings of the conference QCD 08, Montpellier, 7-12 July 200

    Convergence properties of η3π\eta\to 3\pi decays in chiral perturbation theory

    Full text link
    Theoretical efforts to describe and explain the η3π\eta\to 3\pi decays reach far back in time. Even today, the convergence of the decay widths and some of the Dalitz plot parameters seems problematic in low energy QCD. In the framework of resummed CHPT, we explore the question of compatibility of experimental data with a reasonable convergence of a carefully defined chiral series, where NNLO remainders are assumed to be small. By treating the uncertainties in the higher orders statistically, we numerically generate a large set of theoretical predictions, which are then confronted with experimental information. In the case of the decay widths, the experimental values can be reconstructed for a reasonable range of the free parameters and thus no tension is observed, in spite of what some of the traditional calculations suggest. The Dalitz plot parameters aa and dd can be described very well too. When the parameters bb and α\alpha are concerned, we find a mild tension for the whole range of the free parameters, at less than 2σ\sigma C.L. This can be interpreted in two ways - either some of the higher order corrections are indeed unexpectedly large or there is a specific configuration of the remainders, which is, however, not completely improbable. Also, the distribution of the theoretical uncertainties is found to be significantly non-gaussian, so the consistency cannot be simply judged by the 1σ\sigma error bars.Comment: 57 pages, 5 figure

    Electromagnetic corrections in eta --> 3 pi decays

    Full text link
    We re-evaluate the electromagnetic corrections to eta --> 3 pi decays at next-to-leading order in the chiral expansion, arguing that effects of order e^2(m_u-m_d) disregarded so far are not negligible compared to other contributions of order e^2 times a light quark mass. Despite the appearance of the Coulomb pole in eta --> pi+ pi- pi0 and cusps in eta --> 3 pi0, the overall corrections remain small.Comment: 21 pages, 11 figures; references updated, version published in EPJ
    corecore